Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732037

RESUMO

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Assuntos
Imageamento Tridimensional , Microscopia Confocal , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Carbocianinas/química , Rodaminas/química
2.
Exp Eye Res ; 232: 109500, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178956

RESUMO

Primary open-angle glaucoma (POAG) is characterized by optic nerve degeneration and irreversible loss of retinal ganglion cells (RGCs). The pathophysiology is not fully understood. Since RGCs have a high energy demand, suboptimal mitochondrial function may put the survival of these neurons at risk. In the present study, we explored whether mtDNA copy number or mtDNA deletions could reveal a mitochondrial component in POAG pathophysiology. Buffy coat DNA was isolated from EDTA blood of age- and sex-matched study groups, namely POAG patients with high intraocular pressure (IOP) at diagnosis (high tension glaucoma: HTG; n = 97), normal tension glaucoma patients (NTG, n = 37), ocular hypertensive controls (n = 9), and cataract controls (without glaucoma; n = 32), all without remarkable comorbidities. The number of mtDNA copies was assessed through qPCR quantification of the mitochondrial D-loop and nuclear B2M gene. Presence of the common 4977 base pair mtDNA deletion was assessed by a highly sensitive breakpoint PCR. Analysis showed that HTG patients had a lower number of mtDNA copies per nuclear DNA than NTG patients (p-value <0.01, Dunn test) and controls (p-value <0.001, Dunn test). The common 4977 base pair mtDNA deletion was not detected in any of the participants. A lower mtDNA copy number in blood of HTG patients suggests a role for a genetically defined, deficient mtDNA replication in the pathology of HTG. This may cause a low number of mtDNA copies in RGCs, which together with aging and high IOP, may lead to mitochondrial dysfunction, and contribute to glaucoma pathology.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Glaucoma de Baixa Tensão , Humanos , Glaucoma de Ângulo Aberto/diagnóstico , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Pressão Intraocular , Glaucoma de Baixa Tensão/genética , Mitocôndrias/genética
3.
BMC Neurol ; 21(1): 313, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384384

RESUMO

BACKGROUND: SELENON (SEPN1)-related myopathy (SELENON-RM) is a rare congenital myopathy characterized by slowly progressive proximal muscle weakness, early onset spine rigidity and respiratory insufficiency. A muscular dystrophy caused by mutations in the LAMA2 gene (LAMA2-related muscular dystrophy, LAMA2-MD) has a similar clinical phenotype, with either a severe, early-onset due to complete Laminin subunit α2 deficiency (merosin-deficient congenital muscular dystrophy type 1A (MDC1A)), or a mild, childhood- or adult-onset due to partial Laminin subunit α2 deficiency. For both muscle diseases, no curative treatment options exist, yet promising preclinical studies are ongoing. Currently, there is a paucity on natural history data and appropriate clinical and functional outcome measures are needed to reach trial readiness. METHODS: LAST STRONG is a natural history study in Dutch-speaking patients of all ages diagnosed with SELENON-RM or LAMA2-MD, starting August 2020. Patients have four visits at our hospital over a period of 1.5 year. At all visits, they undergo standardized neurological examination, hand-held dynamometry (age ≥ 5 years), functional measurements, questionnaires (patient report and/or parent proxy; age ≥ 2 years), muscle ultrasound including diaphragm, pulmonary function tests (spirometry, maximal inspiratory and expiratory pressure, sniff nasal inspiratory pressure; age ≥ 5 years), and accelerometry for 8 days (age ≥ 2 years); at visit one and three, they undergo cardiac evaluation (electrocardiogram, echocardiography; age ≥ 2 years), spine X-ray (age ≥ 2 years), dual-energy X-ray absorptiometry (DEXA-)scan (age ≥ 2 years) and full body magnetic resonance imaging (MRI) (age ≥ 10 years). All examinations are adapted to the patient's age and functional abilities. Correlation between key parameters within and between subsequent visits will be assessed. DISCUSSION: Our study will describe the natural history of patients diagnosed with SELENON-RM or LAMA2-MD, enabling us to select relevant clinical and functional outcome measures for reaching clinical trial-readiness. Moreover, our detailed description (deep phenotyping) of the clinical features will optimize clinical management and will establish a well-characterized baseline cohort for prospective follow-up. CONCLUSION: Our natural history study is an essential step for reaching trial readiness in SELENON-RM and LAMA2-MD. TRIAL REGISTRATION: This study has been approved by medical ethical reviewing committee Region Arnhem-Nijmegen (NL64269.091.17, 2017-3911) and is registered at ClinicalTrial.gov ( NCT04478981 ).


Assuntos
Distrofias Musculares , Adulto , Criança , Humanos , Laminina/genética , Imageamento por Ressonância Magnética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Avaliação de Resultados em Cuidados de Saúde , Estudos Prospectivos
4.
Eur J Hum Genet ; 29(12): 1789-1795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34426662

RESUMO

In a Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants in SLIRP. SLIRP gene encodes a stem-loop RNA-binding protein that regulates mitochondrial RNA expression and oxidative phosphorylation (OXPHOS). A frameshift and a deep-intronic splicing variant reduced the amount of functional wild-type SLIRP RNA to 5%. Consequently, in patient fibroblasts, MT-ND1, MT-ND6, and MT-CO1 expression was reduced. Lentiviral transduction of wild-type SLIRP cDNA in patient fibroblasts increased MT-ND1, MT-ND6, and MT-CO1 expression (2.5-7.2-fold), whereas mutant cDNAs did not. A fourfold decrease of citrate synthase versus total protein ratio in patient fibroblasts indicated that the resulting reduced mitochondrial mass caused the OXPHOS deficiency. Transduction with wild-type SLIRP cDNA led to a 2.4-fold increase of this ratio and partly restored OXPHOS activity. This confirmed causality of the SLIRP variants. In conclusion, we report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency.


Assuntos
Encefalomiopatias Mitocondriais/genética , Proteínas de Ligação a RNA/genética , Células Cultivadas , Criança , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Genes Recessivos , Humanos , Masculino , Encefalomiopatias Mitocondriais/patologia , Mutação , Proteínas de Ligação a RNA/metabolismo
5.
Front Cell Dev Biol ; 8: 381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596237

RESUMO

High mitochondrial DNA (mtDNA) copy numbers are essential for oogenesis and embryogenesis and correlate with fertility of oocytes and viability of embryos. To understand the pathology and mechanisms associated with low mtDNA copy numbers, we knocked down mitochondrial transcription factor A (tfam), a regulator of mtDNA replication, during early zebrafish development. Reduction of tfam using a splice-modifying morpholino (MO) resulted in a 42 ± 17% decrease in mtDNA copy number in embryos at 4 days post fertilization. Morphant embryos displayed abnormal development of the eye, brain, heart, and muscle, as well as a 50 ± 22% decrease in ATP production. Transcriptome analysis revealed a decrease in protein-encoding transcripts from the heavy strand of the mtDNA, and down-regulation of genes involved in haem production and the metabolism of metabolites, which appear to trigger increased rRNA and tRNA synthesis in the nucleoli. However, this stress or compensatory response appears to fall short as pathology emerges and expression of genes related to eye development are severely down-regulated. Taken together, this study highlights the importance of sufficient mtDNA copies for early zebrafish development. Zebrafish is an excellent model to manipulate the mtDNA bottleneck and study its effect on embryogenesis rapidly and in large numbers of offspring.

6.
Eur J Hum Genet ; 27(3): 389-399, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420677

RESUMO

The phenotypic heterogeneity of Lamin A/C (LMNA) variants renders it difficult to classify them. As a consequence, many LMNA variants are classified as variant of unknown significance (VUS). A number of studies reported different types of visible nuclear abnormalities in LMNA-variant carriers, such as herniations, honeycomb-like structures and irregular Lamin staining. In this study, we used lamin A/C immunostaining and nuclear DAPI staining to assess the number and type of nuclear abnormalities in primary dermal fibroblast cultures of laminopathy patients and healthy controls. The total number of abnormal nuclei, which includes herniations, honeycomb-structures, and donut-like nuclei, was found to be the most discriminating parameter between laminopathy and control cell cultures. The percentage abnormal nuclei was subsequently scored in fibroblasts of 28 LMNA variant carriers, ranging from (likely) benign to (likely) pathogenic variant. Using this method, 27 out of 28 fibroblast cell cultures could be classified as either normal (n = 14) or laminopathy (n = 13) and no false positive results were obtained. The obtained specificity was 100% (CI 40-100%) and sensitivity 77% (46-95%). We conclude that assessing the percentage of abnormal nuclei is a quick and reliable method, which aids classification or confirms pathogenicity of identified LMNA variants causing formation of aberrant lamin A/C protein.


Assuntos
Núcleo Celular/patologia , Fibroblastos/patologia , Testes Genéticos/métodos , Lamina Tipo A/genética , Células Cultivadas , Citogenética/métodos , Fibroblastos/metabolismo , Humanos
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt B): 1960-1967, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29277329

RESUMO

Patients with type 2 diabetes (T2D) and/or insulin resistance (IR) have an increased risk for the development of heart failure (HF). Evidence indicates that this increased risk is linked to an altered cardiac substrate preference of the insulin resistant heart, which shifts from a balanced utilization of glucose and long-chain fatty acids (FAs) towards an almost complete reliance on FAs as main fuel source. This shift leads to a loss of endosomal proton pump activity and increased cardiac fat accumulation, which eventually triggers cardiac dysfunction. In this review, we describe the advantages and disadvantages of currently used in vitro models to study the underlying mechanism of IR-induced HF and provide insight into a human in vitro model: human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Using functional metabolic assays we demonstrate that, similar to rodent studies, hESC-CMs subjected to 16h of high palmitate (HP) treatment develop the main features of IR, i.e., decreased insulin-stimulated glucose and FA uptake, as well as loss of endosomal acidification and insulin signaling. Taken together, these data propose that HP-treated hESC-CMs are a promising in vitro model of lipid overload-induced IR for further research into the underlying mechanism of cardiac IR and for identifying new pharmacological agents and therapeutic strategies. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.


Assuntos
Diferenciação Celular , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético , Resistência à Insulina , Insulina/metabolismo , Miócitos Cardíacos/metabolismo , Linhagem Celular , Linhagem da Célula , Cardiomiopatias Diabéticas/patologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ácido Palmítico/metabolismo , Ácido Palmítico/toxicidade
8.
Front Mol Neurosci ; 10: 336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093663

RESUMO

Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS). Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at a clinical and biochemical level that a high fat diet can be beneficial for complex I patients and that our cell line assay will be an easy tool for the selection of patients, who might potentially benefit from this therapeutic diet.

9.
Circ Cardiovasc Genet ; 10(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28790152

RESUMO

BACKGROUND: Interpretation of missense variants can be especially difficult when the variant is also found in control populations. This is what we encountered for the LMNA c.992G>A (p.(Arg331Gln)) variant. Therefore, to evaluate the effect of this variant, we combined an evaluation of clinical data with functional experiments and morphological studies. METHODS AND RESULTS: Clinical data of 23 probands and 35 family members carrying this variant were retrospectively collected. A time-to-event analysis was performed to compare the course of the disease with carriers of other LMNA mutations. Myocardial biopsies were studied with electron microscopy and by measuring force development of the sarcomeres. Morphology of the nuclear envelope was assessed with immunofluorescence on cultured fibroblasts. The phenotype in probands and family members was characterized by atrioventricular conduction disturbances (61% and 44%, respectively), supraventricular arrhythmias (69% and 52%, respectively), and dilated cardiomyopathy (74% and 14%, respectively). LMNA p.(Arg331Gln) carriers had a significantly better outcome regarding the composite end point (malignant ventricular arrhythmias, end-stage heart failure, or death) compared with carriers of other pathogenic LMNA mutations. A shared haplotype of 1 Mb around LMNA suggested a common founder. The combined logarithm of the odds score was 3.46. Force development in membrane-permeabilized cardiomyocytes was reduced because of decreased myofibril density. Structural nuclear LMNA-associated envelope abnormalities, that is, blebs, were confirmed by electron microscopy and immunofluorescence microscopy. CONCLUSIONS: Clinical, morphological, functional, haplotype, and segregation data all indicate that LMNA p.(Arg331Gln) is a pathogenic founder mutation with a phenotype reminiscent of other LMNA mutations but with a more benign course.


Assuntos
Cardiopatias/genética , Lamina Tipo A/genética , Adulto , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Estudos de Coortes , Eletrocardiografia , Feminino , Efeito Fundador , Haplótipos , Cardiopatias/mortalidade , Cardiopatias/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Desequilíbrio de Ligação , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Membrana Nuclear/patologia , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Sarcômeros/fisiologia , Análise de Sequência de DNA
10.
Eur Heart J ; 37(23): 1815-22, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-26497160

RESUMO

AIMS: Phenotypic heterogeneity and incomplete penetrance are common in patients with hypertrophic cardiomyopathy (HCM). We aim to improve the understanding in genotype-phenotype correlations in HCM, particularly the contribution of an MYL2 founder mutation and risk factors to left ventricular hypertrophic remodelling. METHODS AND RESULTS: We analysed 14 HCM families of whom 38 family members share the MYL2 c.64G > A [p.(Glu22Lys)] mutation and a common founder haplotype. In this unique cohort, we investigated factors influencing phenotypic outcome in addition to the primary mutation. The mutation alone showed benign disease manifestation with low penetrance. The co-presence of additional risk factors for hypertrophy such as hypertension, obesity, or other sarcomeric gene mutation increased disease penetrance substantially and caused HCM in 89% of MYL2 mutation carriers (P = 0.0005). The most prominent risk factor was hypertension, observed in 71% of mutation carriers with HCM and an additional risk factor. CONCLUSION: The MYL2 mutation c.64G > A on its own is incapable of triggering clinical HCM in most carriers. However, the presence of an additional risk factor for hypertrophy, particularly hypertension, adds to the development of HCM. Early diagnosis of risk factors is important for early treatment of MYL2 mutation carriers and close monitoring should be guaranteed in this case. Our findings also suggest that the presence of hypertension or another risk factor for hypertrophy should not be an exclusion criterion for genetic studies.


Assuntos
Miosinas Cardíacas/genética , Efeito Fundador , Hipertrofia Ventricular Esquerda/genética , Mutação/genética , Cadeias Leves de Miosina/genética , Feminino , Alemanha/epidemiologia , Humanos , Hipertensão/genética , Hipertensão/mortalidade , Hipertrofia Ventricular Esquerda/mortalidade , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Remodelação Ventricular/genética
11.
J Med Genet ; 50(2): 125-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23339111

RESUMO

BACKGROUND: Mitochondrial or oxidative phosphorylation diseases are relatively frequent, multisystem disorders; in about 15% of cases they are caused by maternally inherited mitochondrial DNA (mtDNA) mutations. Because of the possible severity of the phenotype, the lack of effective treatment, and the high recurrence risk for offspring of carrier females, couples wish to prevent the transmission of these mtDNA disorders to their offspring. Prenatal diagnosis is problematic for several reasons, and concern the often poor correlation between mutation percentages and disease severity and the uncertainties about the representativeness of a fetal sample. A new option for preventing transmission of mtDNA disorders is preimplantation genetic diagnosis (PGD), which circumvents these problems by transferring an embryo below the threshold of clinical expression. METHODS: We present the data on nine PGD cycles in four female carriers of mitochondrial diseases: three mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (m.3243A>G), and one Leigh (m.8993T>G). Our threshold for transfer after PGD is 15% for the m.3243A>G mutation and 30% for the m.8993T>G mutation. RESULTS: All four female carriers produced embryos eligible for transfer. The m.8993T>G mutation in oocytes/embryos showed more skewing than the m.3243A>G. In about 80% of the embryos the mutation load in the individual blastomeres was fairly constant (interblastomere differences <10%). However, in around 11% (in embryos with the m.3243A>G mutation only), the mutation load differed substantially (>15%) between blastomeres of a single embryo, mostly as a result of one outlier. The m.8993T>G carrier became pregnant and gave birth to a healthy son. CONCLUSIONS: PGD provides carriers of mtDNA mutations the opportunity to conceive healthy offspring.


Assuntos
Análise Mutacional de DNA/métodos , DNA Mitocondrial/análise , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Diagnóstico Pré-Implantação/métodos , Adulto , Blastômeros/fisiologia , DNA Mitocondrial/química , DNA Mitocondrial/genética , Embrião de Mamíferos , Feminino , Humanos , Masculino , Mutação , Oócitos/fisiologia , Linhagem , Gravidez , Zigoto/fisiologia
12.
J Cell Biochem ; 111(6): 1575-85, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21053274

RESUMO

Adipose tissue is currently being recognized as an important endocrine organ, carrying defects in a number of metabolic diseases. Mitochondria play a key role in normal adipose tissue function and mitochondrial alterations can result in pathology, like lipodystrophy or type 2 diabetes. Although Pgc1α is regarded as the main regulator of mitochondrial function, downstream Nrf1 is the key regulator of mitochondrial biogenesis. Nrf1 is also involved in a wide range of other processes, including proliferation, innate immune response, and apoptosis. To determine transcriptional targets of Nrf1, 3T3-L1 preadipocytes were transfected with either pNrf1 or a control vector. Two days post-confluence, 3T3-L1 preadipocytes were allowed to differentiate. At day 8 of differentiation, Nrf1 overexpressing cells had an increased mtDNA copy number and reduced lipid content. This was not associated with an increased ATP production rate per cell. Using global gene expression analysis, we observed that Nrf1 overexpression stimulated cell proliferation, apoptosis, and cytokine expression. In addition, prolonged Nrf1 induced an adipokine expression profile of insulin resistant adipocytes. Nrf1 has a wide range of transcriptional targets, stimulators as well as inhibitors of adipose tissue functioning. Therefore, post-transcriptional regulation of Nrf1, or stimulating specific Nrf1 targets may be a more suitable approach for stimulating mitochondrial biogenesis and treating adipose tissue defects, instead of directly stimulating Nrf1 expression. In addition, our results show that short-term effects can drastically differ from long-term effects.


Assuntos
Adipócitos/imunologia , Adipócitos/metabolismo , Resistência à Insulina/fisiologia , Fator 1 Nuclear Respiratório/metabolismo , Células 3T3-L1 , Adipócitos/ultraestrutura , Adipogenia/genética , Adipogenia/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Proliferação de Células , DNA Mitocondrial/genética , Resistência à Insulina/genética , Camundongos , Microscopia Eletrônica de Transmissão , Fator 1 Nuclear Respiratório/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...